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Abstract. We examine the problem of retrieving three-dimensional lightning locations from

radio frequency time-of-arrival (TOA) measurements. Arbitrary antenna locations are consid-

ered. By judiciously differencing measurements that are related to the location of the antennas

and their excitation times, the problem is converted from the initial spherical nonlinear form to a

system of linear equations. In the linear formalism, the source location and time-of-occurrence is

viewed geometrically as an intersection of hyperplanes in the four-dimensional Minkowski

space (x,y, z, t). The linear equations are solved to obtain explicit analytic expressions for the

location and time variables. Retrieval errors are not interpreted with conventional Geometrical

Dilution of Precision (GDOP) arguments as discussed by Holmes and Reedy [1951], but with

more recent inversion analyses considered by Twomey [1977]. Measurement errors are propa-

gated analytically so that the specific effect of these errors on the solution is clarified. The sensi-

tivity of the solution on the number of antennas used, antenna network geometry, source posi-

tion, and measurement differencing schemes are discussed in terms of the eigenvalues of the

linear system.

1. Introduction

A variety of data analysis techniques and hardware have been

used in the retrieval of lightning locations from ground-based

radio frequency time-of-arrival (TOA) measurements [Holmes

and Reedy, 1951; Lewis et al., 1960; Oetzel and Pierce, 1969;

Proctor, 1971; Cianos et al., 1972; Murty and MacClement,

1973; MacClement and Murty, 1978; Taylor, 1978; Rustan et al.,

1980; Bent et al., 1983; Thomson et al., 1994; and Hager and

Wang, 1995]. Primary differences between these studies include

the number and type of antennas used, the antenna baseline,

whether a two-dimensional or three-dimensional fix of the source

is desired, the mathematical means for retrieving source location,

and the procedure for estimating retrieval error.

The radio source location in the xy plane has been considered,

in the mathematical sense, as an intersection of hyperbolas.

Given two distinct antenna locations, an arbitrary radio point

source will excite each antenna at a specific time. If the positive

difference in these excitation times is multiplied by the wave

propagation speed, the resulting distance value will define a

hyperbola in the xy plane with foci given by the two antenna

locations. (Note that this follows directly from the definition of a

hyperbola: The set of points such that the positive difference of

the distances from two fixed points (called foci) to any point in

the set is the same for all points in the set.) In the absence of

measurement errors, the set of points (x,y) defining the hyperbola

represents the solution space of possible locations of the radio
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source. One branch of this hyperbola can be excluded from the

solution space by examining which antenna was excited first by

the source.

Since two antennas cannot uniquely specify the source location

in the xy plane, a third antenna is used. That is, two distinct

hyperbola branches are defined by considering two possible pairs

of the three antennas. The source is located where these hyper-

bola branches intersect.

Unfortunately, it is possible for two hyperbola branches to

intersect at two locations. In this case a fourth antenna can be

used to remove source location ambiguity. In addition, modified

hyperbolic equation sets are often considered when it is desired to

fix the source on the spheroidal Earth. The reader is refered to

Holle and Lopez [1993] for further comments and illustrations on

two-dimensional fixing of lightning radiation sources as they

pertain to the Lightning Position and Tracking System (LPATS).

The more formidable task of determining the three-

dimensional source location (x,y,z) can be viewed as the math-

ematical intersection of hyperboloids of two sheets. The appendix

of Proctor [1971] discusses some aspects of this problem; it

describes a nonlinear numerical solution that involved iterative

improvements of an initial source location estimate. An analytic

solution with analytic error results (generalized to arbitrary

antenna network geometries and source location) was not

obtained.

In a recent paper by Thomson et al., [1994] a method was

introduced as a variation to Proctor's approach called a

"weighted hyperbolic technique." In addition, a variety of

improvements in analysis software, hardware (specifically timing

accuracy), and calibration techniques were implemented in this

five-antenna TOA system. Solution retrieval errors were studied
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using nonlinear numerical methods, and general analytic expres-

sions for retrieval errors were not investigated.

The clever investigation by Taylor [1978] avoids hyperbolic

equations altogether by deducing the azimuth and elevation

angles from a system of three ground-based antennas and one

elevated antenna. Using two of these four-antenna network sys-

tems, simple triangulation is used to locate the source in (x,y,z).

An obvious drawback of this approach is the need for eight

antennas in the total system.

A retrieval algorithm based on the early work of Holmes and

Reedy [1951] is currently employed in the Lightning Detection

and Ranging (LDAR) system located at the NASA Kennedy

Space Center, Florida. This system is described by Poehler and

Lennon [1979] and a performance analysis is provided by both

Poehler [ 1977] and Maier et al. [ 1995].

The study by Holmes and Reedy [1951] identifies certain

aspects of the effects of antenna network placement, measure-

ment errors, and source location on final retrieval errors. This is

accomplished by a Geometrical Dilution of Precision (GDOP)

analysis that has been used by Maier et al. [1995] to assess

LDAR retrieval errors.

In this work, we describe a general analytic solution to the

problem of determining the three-dimensional location and time-

of-occurrence of lightning radio sources from a set of four or

more (arbitrarily located) electric field antennas, when measure-

ment errors are present. By judiciously combining certain mea-

surements we eliminate the nonlinear space and time variables

inherent in the transit equations that define the excitation time of

each antenna. We emphasize the proper mathematical interpreta-

tion of the solution space, describing it as an intersection of

hyperplanes in the four-dimensional Minkowski space (x,y,z,t).

An analytic expression is also derived that clarifies the effect of

antenna network geometry, time-differencing schemes, source

location, and measurement error on the final solution retrieval

error. Unlike earlier GDOP error analyses [Holmes and Reedy,

1951], we apply the more recent linear inversion theory by

Twomey [1977] to clarify and emphasize the underlying nature of

retrieval errors in this problem. The relationship between mea-

surement error (that is, timing and antenna placement errors), the

eigenvalues of the linear system, and error magnification are

stressed. Several computer-simulated tests of the retrieval method

are provided and we conclude with some comments on how to

improve/optimize processing of LDAR data.

2. Method

The development in this section was presented by Koshak and

Christian [1994]. A similar development is provided by Hager

and Wang [1995]. Figure 1 depicts a radio lightning (point)

source a distance R i from the i th antenna. The i th antenna is

excited at time, ti, given by

t i =t+Ri/v. (1)

Here, t is the source activation time, Ri / v the transit time of the

radio wave, and v is the speed of light in air. The direction of the

relative position vector, Ri, follows standard physics convention,

that is, it is directed from the source to the observation point.

Note that additional known time-delays (e.g., cable time-delays)

can be added to this expression if necessary without affecting the
essential mathematical forms to follow. Note also that we have

neglected curved transit paths due to refractive effects in the

atmosphere.
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Figure ]. The geometry for lightning radio source retrieval.

Solving (I) for Ri, squaring, and grouping all terms nonlinear

in the source range, r, and activation time, t, leads to the follow-

ing form, ai, defined by

ai =-(r 2 -v2t 2)/2 =(xix+yiy+ziz-v2tit)-(r 2 -v2t 2)/2. (2)

We now define a new measurement, go, that is proportional
only to the linear variables (x,y,z,t). This is achieved by consider-

ing the i th and jth antennas, and constructing the difference

gij = ai -aj =(xi - xj )x +(yi - Yj )y

+(z,-zj)z-v,(,,-,,),
(3)

For n > 4 antennas labeled 1, 2..... n there are p possible con-

straint equations of the form given in (3), where p is a combina-

tion of n antennas taken 2 at a time [i.e., p - Cn, 2 = n(n- 1)/2].

Of the p equations, only m = n - I are linearly independent. In

this study, we consider only the m independent equations given
by,

g = Kf = col(g21 ,g31 ..... gml ), (4)

where f = col(x,y, z, _'2t), and K is a (mx 4) matrix given by

rx21 Y21 Z21 t21

/xK = 31 Y31 z31 131

[Xml Yral Zml t I

(5)

We have invoked the differencing notation ct q =- ct i - ctj , ct -
x, y, z, or t, for brevity. Other differencing schemes are possible,

that is, all differences could be taken with respect to antenna

number 2 for example. Some differencing schemes can be shown

to be more optimum than others from the standpoint of the degree

of error magnification that results for a particular source location

(see section 4 below). Note that the linear system in (4) can also

be taken as an under- or over-determined system of equations that

can be solved using the general theory of constrained linear

inversion [see Twomey, 1977; chapter 6].

Finally, note that the K-matrix conveniently summarizes all

spatial and temporal difference measurements between the vari-

ous antennas, and analytic forms for K -I are obtainable. The

time-difference matrix, T, with elements ti) is traceless, anti-

symmetric, and obeys the useful addition property given by
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ti j = ti k + tkj . (6)

This result will be used to simplify a particular form of K -I

associated with a triangular array of antennas (see section 7

below).

3. Note on Terminology

In the literature, the usage of the phrase "hyperbolic system" is

frequently used to describe the multiple station TOA antenna

network. This terminology originates from the consideration of

simple two-dimensional hyperbola branch intersections that

define radio source location (see section 1). Unfortunately, when

one considers three-dimensional source location problems direct

intersection of hyperboloidal surfaces has been found to be diffi-

cult [Proctor, 1971; appendix A]. However, mention of hyper-

boloidal surfaces is not even required to solve the problem.

The form given in (I) can be written: R_ = v2(ti-t) 2, which

defines a spherical surface in position space (x, y, z) since t is

regarded as a constant. The center of the sphere is located at the

i 'h antenna (xi,Yi,Z i) and has radius vlt i -t[. Because the light-

ning source must be located on or above the xy plane, that portion

of the spherical solution space lying below the ay plane is

excluded.

The spherical form was removed by using the derived differ-

ence measurement given in (3). The form of (3) is that of a

hyperplane in the four-dimensional space (x, y, z, t), or

Minkowski space. Hence, the lightning radio source location and

time-of-occurrence is most concisely defined as the intersection

of four hyperplanes in Minkowski space. In this sense, the

nomenclature "hyperplane system" is more appropriate than

"hyperbolic system."

4. Analytic Expression for Retrieval Errors

We now discuss the errors that arise when one attempts to

solve (4). Unlike the approximative nonlinear error analyses dis-

cussed by Holmes and Reedy [1951], Proctor [1971], and

Thomson [ 1994], our error results are straightforward, linear, and

analytic.

We start with a linear system of the form given in (4)

g'- K' f', (7)

where primed variables indicate exact quantities, that is, none of

these variables are associated with measurement errors. If the

actual location of the ith antenna, r_, is measured with location

error, e i, and if the actual TOA difference between the ith and jth

antennas, tb is estimated with timing error, oij, then actual

(primed) and measured (unprimed) quantities are related by

r_ = r i +e i ,
(8)

t_j = tij + aij •

Solving (8) for r i and tij, and using (2) and (3) gives,

g' = g+8 (9)

where the components of 8 are given by

_ij=ri'ei-rj'eJ+2(e2-e2 )

]
(10)

By similar means, we obtain an expression for the error-free

kernel matrix, K', in terms of the measured kernel,

K'-K +E, (11)

where the error matrix is given by,

[ ]ex21 ey21 ez21 0"21

E = ex31 ey31 ez31 °'31

exml eyml ezml arnl

(12)

and e aij " (e i- ej). _ with ¢t denoting any of the coordinate unit

vectors x, y, or z.

Substituting (9) and (I 1) into (7) and inverting gives the

retrieved solution, f, directly in terms of the actual source, f',

f= f' +(ICK)-II0(E f'- 8). (13)

This result clarifies exactly how the retrieval of source loca-

tion and activation time is distorted by measurement errors

(8, E). Here, the errors (8, E) are related to the uncertainty in

antenna placement, e i , and time difference error, oij, as

provided in (10) and (12), respectively. Note that the retrieval

error, _ -KtK)-q_(E f'- 8) is proportional to the actual source,

f'. This implies that distant sources (those with large values of

x', y', and/or z' ) are more difficult to retrieve accurately.

The result in (13) also clarifies how network geometry and

source location amplify, or otherwise distort, the measurement

errors. The minimum eigenvalue of KtK (and hence the degree of

retrieval error magnification) can be modulated by adjusting the

antenna network geometry and source location. If the minimum

eigenvalue of KtK is small, large elements will appear in

(KtK') -t, making the retrieval error, t, large. In addition, the

minimum eigenvalue of KtK can also be increased or decreased

simply by changing the differencing scheme described in section

2 immediately following (5). The reader is referred to Twomey

[1977; chapter 6] for more on the topic of error magnification by

small eigenvalues,

5. Antennas in the Plane

If five antennas are placed on flat terrain (vertically adjustable

antenna mounts could be employed if terrain is not sufficiently

#4_

#1

d

y

--×

#2

Figure 2. Square antenna network geometry, and the three

azimuths along which simulated lightning radio sources were

placed.
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flat),thethirdcolumnofK will be all zeroes. In this case, the

third column and fourth row of K can be eliminated, resulting in

a (3x3) K-matrix. Thus, if just four antennas are located in a

plane, the solution becomes:

]r IF1I x x21 Y21 t21 g21

'-i '2i--F
L -v tO Ix41 Y41 t41_l Lg41_l

(14)

and the altitude is obtained by back substitution into (1), that is, z

= [v2(t]-t) 2 -(xj-x) 2- (yry)2] t'2. In the following sections we

test the linear theory by considering a square network and a tri-

angular network, each composed of four antennas.

6. Square Network Results

If four antennas are placed in a square configuration with
baseline d as shown in Figure 2, the analytic forms of K and K-n
become,

_! 0 t,2]K : -d t23 [
0 t34 .J

0 t12 1

(15)

and we have used the differencing scheme {site 1 - site 2, site 2 -

site 3, site 3 - site 4}. Note that K is singular whenever (t12 + t34 )

= o, that is, whenever a source is located on or above the x or y

axes. Hence, as a source is moved progressively closer to these

symmetry axes, the minimum eigenvalue of K approaches zero,

the elements of K -] become very large, and the error vector

(E f'-8) in (13) becomes excessively magnified. That is, the

retrieval error, E, grows without bound. In effect, the network

becomes progressively "blind" to sources located near the sym-

metry axes. (Note that for a determined system, (! 3) reduces to:
f= f' + K-I(E f'-8).)

In our computer-simulated retrieval of known radio sources,

we placed the sources along azimuths - 5 °, 22.5 °, and 45 ° as

shown in Figure 2 and varied the distance,/9, from the center of

the network. The locations chosen along these azimuths were
500 m apart. Time difference and antenna location errors were

randomly varied from 0 to 50 ns and 0 to 10 cm, respectively, and
100 retrievals were performed at each location.

Mean spatial and temporal retrieval errors are provided in
Figure 3 for sources with altitudes of 7 km. Note that the errors

(and the fluctuation of the errors) increase for sources near the x

and y axes as predicted above from the form of K -]. Note also

that the errors increase for distant sources as predicted by (13).
Similar retrieval errors are obtained when the known source alti-

tude is lowered to 2 km or raised to 10 km. Of course, our simu-

lations do not account for ground reflections/impedences that
may occur in nature for low elevation sources.

7. Triangular Network Results

It is natural at this point to ask the question: Is it possible to

select a specific network geometry that is not "blind" to any
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Figure 3. Mean (a) location and (b) time-of-occurrence error for

sources placed in the vicinity of the square network along the
azimuths shown in Figure 2. Source altitude is 7 km. Figure 3c
shows the mean and standard deviation (vertical lines) for the
case O= 22.5 °.

source location? Mathematically, this is equivalent to asking
whether or not there exists a network geometry such that K is

nonsingular for all source locations (x,y, z). We begin by consid-

ering a triangular network geometry given in Figure 4, this

geometry has been referred to as a "Y" configuration by Poehler

[1977; 1979] as is evident if Figure 4 is inverted. Three of the

four antennas are placed at the vertices of an equilateral triangle,

and the fourth is placed at the center of the triangle. The distance
from the central antenna (taken as the origin) to any of the other
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Figure 4. Triangular network geometry, and the three azimuths
along which simulated lightning radio sources were placed.

antennas is given by d. An arbitrary source location is a distance

r = (x 2 +y2 + z2)1;2 from the central site, and the distance between

the source and the remaining antennas is the magnitude of the

relative position vector, R i= [(x i -x) 2 + (Yi- Y )2 + Z2]t/2.

For this network, the analytic forms for K and K -I are

I 0 -d g21
K= dcos 6 d(l+sin 6) t23 /

L-2dcos6 0 t34 j

(16)

K-I = -I
/21 +t31 +/41

3t34 t34 -(3ti2 / 2 +t23)

2dcos rt dcos rt dcos rt
6 6 6

-(2t23 + t34 ) 2tl....22 tl....g.2
d d d

3 2 1

where we have used the differencing scheme given in section 6

and we have repetitively applied (6) to simplify the form of K-k

If we change the differencing scheme to that implied by (5), that

is: {site 2 - site 1, site 3 - site 1, site 4- site 1 }, we obtain:

K_

0 d t21

-dcos 6 -dsin 6 t31

dcos 6 -dsm_ t41

(17)

K -I

131 --/41

2dcos £
6

1 t31 + t41

t21 +t31 + t41 d

1

-(t21/2+t41) (t21 / 2+t31)

dcos 6 dcos 6

-t21 -t2_.....il

d d

1 I

Since tij = (R i -Rj)/v, it follows that K (in both (16) and
(17)) is singulal" if and only if r is the average of {R 2, R3, R4}. We

iaave scanned a large (x, y, z) grid volume with a computer to

evaluate r, R 2, R 3, and R 4 and have found no singularities in K.

However, to the best of our knowledge the nonsingular nature of

K has not been rigorously proven. A tedious, yet complete proof

is provided in the appendix.
The results of the c 3mputer simulation for the triangular net-

work geometry arc given in Figure 5 for the two differencing

schemes provided in (16) and (17). As seen in Figure 4, we have

chosen three symmetry azimuths q = 30 °, 60 °, and 90* to charac-

terize the errors throughout the xy plane• Once again, we see

errors increase with distance from the network as predicted by

(13). What is most interesting to note from Figure 5 is that the

differencing scheme used in (17) provides errors that are almost
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Figure 5. Mean location error for sources placed in the vicinity
of the triangular network along the azimuths shown in Figure 4

for antenna differencing scheme (a) {1 - 2, 2 - 3, 3 - 4} (b) {2 - 1,

3 - I, 4 - 1}; where for example, site I = 1. Source altitude is

7 km.
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50%less(at100km)thanthoseerrorsobtainedusingthediffer-
encingschemein(16).

8. Seven-Antenna Network Results

The NASA-KSC LDAR system recently discussed by Maier et

al. [1995] has a total of seven ground-based antennas for deter-

mining the sources of VHF pulses at 66 MHz. The network has

one central site and six antennas that are separated in azimuth by

roughly 60*. The six outer sites are nearly equidistant from the

central site. Hence, the LDAR network can approximately be

viewed as two separate triangular networks (see Figure 4) that are

rotated by 180 ° from one another and that share the same central

site. The source location is found by inverting a determined linear

system that is similar, but not identical to, the system given in

(14) for one of the triangular networks. A solution is also found

for the other (180" rotated) triangular network. The two solutions

are compared and if consistent a final answer is given. If the

solutions are not consistent, 18 additional four-antenna network

inversions are performed. If sufficient consistency is apparent, a

final solution based on the 20 separate solutions (each appropri-

ately weighted) is obtained (i.e., the central site is used in each
derived four antenna network so there are a combination of six

antennas taken three at a time, or a total of 20 possible derived

networks)• Additional details are provided by Maier et al. [1995].

Instead of performing multiple retrievals to obtain a final

solution, we perform one inversion of the overdetermined system

given in (3) with m = 6. The seven-antenna network that we use

is that of two triangular networks that are rotated 180* apart from

one another and that share the same central site. The error results

for two symmetry azimuths are provided in Figure 6. It is clear

from this result that the single overdetermined retrieval is more

accurate than any of the previous four antenna network results

given above. Furthermore, a single retrieval generally requires

less computer CPU time than multiple retrievals (and solution

comparisons) performed with the current LDAR system.

Nonetheless, given high-speed computers of today, CPU time

expenditure is not a problem with the current LDAR algorithm.

Indeed, both the LDAR algorithm and the solutions we have

presented do not require actual "matrix inversions," but are

closed form forward computations based on analytic expressions
for the matrix inverse.

4 i

8

E

01-,
0

Figure 6.

• " " I " " " I " " " I " " " I ....

3060

I • • I • • • I • • . I . ! ! I

20 40 60 80 1O0

p (km)

Mean location error for a symmetric seven antenna

network with all sites differenced with respect to the central site.
Source altitude is 7 km.

In addition, there is a benefit in computing several solutions in

the current LDAR algorithm. The solution comparison process

described in Maier et al. [1995] helps "weed-out" poor solutions

(e.g., as might be obtained when the network triggers on two or

more distinct VHF sources)•

However, in the case of seven-station retrievals that give poor

(i.e., nonphysical) results, we suggest removing one site and then

performing a six-station retrieval, if there is no improvement in

the solution, a different site can be removed so that an alternate

six-station retrieval can be completed. One can permute through

all such possibilities. If there is still no improvement, two sites

can be removed, etc., or even three sites.

In effect, we do not force a four-antenna retrieval. Instead, we

take full advantage of an overdetermined retrieval whenever

possible. In this way, we minimize retrieval error.

9. Summary

We have reexamined the problem of retrieving radio source

location and time-of-occurrence from TOA data. We have sug-

gested the more appropriate terminology for a TOA measurement
network as a "hyperplane system," since the source location and

time-of-occurrence is most concisely viewed as a geometrical
intersection of hyperplanes in Minkowski space. With this

formalism, we have derived an analytic expression for retrieval

error as given in (13) that enhances earlier nonlinear GDOP error

analyses provided by Holmes and Reedy [ 1951]. In so doing, we

have clearly identified the important variables that affect retrieval

accuracy: network geometry, number of antennas, differencing
scheme, source location, timing error, and antenna location error.

Computer simulations have been added to help elucidate and

confirm the attributes/predictions of the retrieval equation in (13).

In the future, we intend to apply our linear inversion analysis
to actual LDAR TOA data derived from Florida thunderstorms.

We will attempt to make further comparisons between the

retrieval algorithm currently in use with LDAR and our algo-

rithm. As part of algorithm optimization, we shall also investigate
several external constraints to the solution process that, based on

real data retrievals and computer simulations, prove to stabilize

the final solution. Finally, one author shall investigate the

possibility of using LDAR retrievals to help constrain the

location of lightning charges as derived from the Advanced
Ground Based Field Mill (AGBFM) network at NASA-KSC.

Appendix: The Nonsingular Nature of K for the
Triangular Network

Here, we show that the (3 x3) kernel matrix, K, for the triangu-

lar network (with any nondegenerate differencing scheme, for

example, as in (16) or (17)) is nonsingular. This is equivalent to

showing that the average of the distances from an arbitrary point

to the three vertices of an equilateral triangle is greater than the

distance from that point to the centroid. The desired result is

obtained by seeking the extrema of the sum of distances from the

vertices to a point on a hemisphere of radius r centered at the

centroid of the triangle. Full generality is recovered by allowing r

to be arbitrary. We set up a Cartesian coordinate system, with

points specified by (x, y, z), and its origin at the centroid. Vertices
are located at

d 2 =d_', d 3 =-d --_--x+_-y , d 4 =d i--_y ; (AI)

the distance from the centroid to a vertex is d. For the present,
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assumer > d. It will be convenient to consider the distances from

the vertices on an orthogonal coordinate system. We will set R 2 =

X, R 3 = Y, andR 4 = Z. Vectors from antennas 1 through 4 to the

source will be denoted by r, X, Y, Z, respectively. Let 0 denote

the angle between d e and r. Employing the law of cosines, it may

be shown that

3r 2=X 2+Y2+Z 2_3d 2 . (A2)

It will be necessary to extremize

F(X,Y,Z)= X + Y + Z (A3)

subject to (A2).

Using Lagrange multipliers or any other suitabl_g!b_Qd, the

onltzgcKCemum in the first octant is X = Y =Z = _/r 2 +d 2 ; F =
3_/r 2 +d 2 > 3r. This turns out to be a local maximum. Minima

must be found by looking along boundaries. These are not neces-

sarily in any coordinate plane. All of X, Y, Z must be greater than

or equal to r- d. Eliminating Z reduces the problem to finding

the minima of:

f(X,Y)= X + Y + Z(X,Y),

(A4)

Z(X,Y)=_3(r2 +d2)-X2-y 2

with the requirement that none of X, Y, Z be negative. An addi-

tional constraint is obtained from (A2),

X 2 +y2 _<2(r 2 +d 2 +rd). (A5)

This constraint does not sufficiently limit f; X and Y cannot
both attain their minimum values of r- d at the same time.

Boundaries are shown in Figure A 1. The smallest values of Y for

a fixed X occur when z = 0 (the lightning event is in the plane of

the triangle). This may be demonstrated by writing

y2 = r 2 + d 2 _ 2r. d 3 . (A6)

Elevating the lightning event from the plane of the triangle

while keeping X and r constant is equivalent to rotating X and r

about d 2. Here, d 3 has no z component and y is constant. The

value of Y is minimized when x is as small as possible (at z = 0).

The slope of a tangent to POQ is given by

dY sin(2zr / 3- 0) X
--=

dX sin 0 Y
(A7)

It is never positive and goes from 0 at (4r 2 +d 2 +rd r-d] to

( 22 3 \ ' }--oo at r-d,4r +d +rd .Atthepoint O,X=Y, 0=zr/3,

and dY//#( = -1. The coordinates of this point are X = Y =

r + d 2 - rd .

The gradient

Vf(X,Y)=(1- X / Z)X +(I- Y / Z)_Z (AS)

points in the direction of greatest increase of f. The region in

Figure AI can be thought of as a mountain with its summit at X =
/--.-

Y = _]rZ +d_the point labeled S). On the square region

O<X<_r2+d 2, O<Y< r2_-_+d2,wehaveZ_>XandZ>_Y.

Except at S, the inequality is strict. The gradient points up and to

the right. Below the line segment OS, tr/3 < 0 <- 27r/3, and X>

Y. The opposite is true above OS. The mountain has a ridge

along this line segment. Below and to the left of S, it is clear that

as X and Y decrease, Z increases (the components of the gradient

remain positive). Values off beneath or to the left of POQ are

smaller than values on this curve.

It will not be necessary to investigate the values off along PT

or QT. These curves can be mapped onto POQ by a suitable

relabeling of X, Y, Z. Symmetry may be further exploited to

reduce the effort. An interchange of X and Y will map OP and

OQ onto each other.

It turns out to be difficult to parameterize Y in terms of X and

obtain the minima along the bounding curve by differentiation.

We will bound the values of__.ffalong OQ by those on a simpler

polygonal boundary below OQ.

We begin at Y = r - d and require that

f(X,r-d)= X +(r-d)+ Z(X,r-d)> 3r . (A9)

This leads to the inequalities

2X 2 -2(2r+d)X+2r 2 -d 2 +2rd <0,

(AIO)

..... ....... 7

_( r2 + d 2)

--4_

r-d i
I

"_[ r2 +d2 +rd , ,,

]"-'- a[ 2(re+de+rd)'_i

Figure A1. Boundaries in the XY plane.

X

r _-......._ld < X < r + _rs +_....._ld .
2 2

The largest value of X that needs to be considered is

r +d 2 +rd . Extrema along this line segment, denoted by

QB (see Figure A2), must be at the endpoints

f(4r2+d2+rd,r-d)=r-d+24r2+d2+rd>3r,

(AI l)

The next portion of the bounding curve is drawn by leaving

X =r-('_- l)d/2 and increasing Y to some point below
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Y P

O

B
! s I

t I

I i

I

Figure A2. Polygonal path.

X

The location of this point may be found by solving for cos0 in
X2 = r 2÷ d 2 -2rd cos0. We find that

4_ I dcos0=--4 "- t
2 4 r

(Ai2)

-f_/2 "_-/2 + 1
r -1.d<X<_r+ d, (AI5)

3 3

It will not be necessary to proceed from C all the way to the value

indicated in (AI5). We can stop at a point E which has the same
X-coordinate as O. From the estimate

( /2"_/_-/2- 1
r- d < (r-0.7d) 2 <r 2 +d 2 -rd (Ai6)

3

we see that f (X, Y) > 3r at every point of this portion of the

boundary.

Finally, we proceed vertically from Eto O. The derivative off

with respect to Y is positive for Y below O. The smallest value of

f here is at E.

Because of the relative positions of the actual and polygonal

boundaries and the topography of the surface, the inequality is

strict; X + Y + Z > 3r. When r > 0, the result for the case r< d

may be inferred by interchanging r and d in the preceding calcu-

lations and showing that X + Y + Z > 3d > 3r. The case r = 0 is

immediate.

When r >> d, the order of magnitude of the eigenvalues may

be found. In this case the vectors X, Y, Z, and r are all almost

parallel. Consider two parallel planes whose common normal is

in the same direction as r. One is located at the origin, the other

passes through the source point. The magnitude of X can be
written as

cos( -0) =
=T_-L 2 4rJ

+ 33''  -122 4r _]- 23/2 4 <3 "

Using the law of cosines to write y2 in terms of r, d, and

cos(27r/ 3- 0), we see that Y decreases as cos(2tr/3-0)

increases. The smallest value of Y on POQ. for

x = r-(',f3- I)d/2 is bounded using (AI2);

Y>-4r 2 +d 2 -4rd/3 >r-2d/3 . (AI3)

We can proceed up to point C, whose coordinates

r-2,,3)
As for the first part of the polygonal bounding curve, the

extrema are at the endpoints. The minimum value of falong BC

is 3r and occurs at B. The maximum is located at C and is given

by

+_r 2 +(14/9 +_f3/2)d 2 + (_F_ + 1/3)rd> 3r

(A 14)

Proceeding as before, we fix Y = r- 2d / 3 and see how far to

the left we can go and still havef > 3r. This time we obtain the

inequality

X 2 = X '2 +[d 2 x _.12 , (A17)

where X' is the distance from the head of d 2 to the plane at the

source point. Similar relations hold for Y and Z.

The magnitudes of X',Y',Z' may be found by subtracting the

dot products d2-_,d3._,d4._ from X, Y, Z respectively.

Setting dj ._ = mj, j = 2, 3, 4, we find

m2 m3
=r y' r\ z z) 4( 2 2)'

4

raj =0 .

j=2

(Al8)

The leading approximation X = X', etc., is not sharp enough

in this regard. A second-order approximation is needed.

Let [dj x_" = nj. The length X may be written in the form

--r-m2
2r

(Al9)

Summing (A t9) with similar expressions for Y and Z gives

X+Y+Z =3r+ n22 +n32 +n42
(A20)

2r

Since not all of the nj's can be zero at the same time, X + Y+ Z

> 3 r. Substituting for dj and r yields
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-3d2[x2 +2z2) ,n22+n32+n42_ 2r 2 _ +y2
(A21)

from which we see that t21 +t31 +t41 = O vr j
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